Description: Advancing Development of Synthetic Gene Regulators by Anandhakumar Chandran Herein is described a method that was developed using high-throughput sequencing to map the differential binding sites and relative enriched regions of non-cross-linked SAHA-PIPs throughout the complex human genome. FORMAT Paperback LANGUAGE English CONDITION Brand New Publisher Description This book focuses on an "outside the box" notion by utilizing the powerful applications of next-generation sequencing (NGS) technologies in the interface of chemistry and biology. In personalized medicine, developing small molecules targeting a specific genomic sequence is an attractive goal. N-methylpyrrole (P)–N-methylimidazole (I) polyamides (PIPs) are a class of small molecule that can bind to the DNA minor groove. First, a cost-effective NGS (ion torrent platform)-based Bind-n-Seq was developed to identify the binding specificity of PIP conjugates in a randomized DNA library. Their biological influences rely primarily on selective DNA binding affinity, so it is important to analyze their genome-wide binding preferences. However, it is demanding to enrich specifically the small-molecule-bound DNA without chemical cross-linking or covalent binding in chromatinized genomes. Herein is described a method that was developed using high-throughput sequencing to map the differential binding sites and relative enriched regions of non-cross-linked SAHA-PIPs throughout the complex human genome. SAHA-PIPs binding motifs were identified and the genome-level mapping of SAHA-PIPs-enriched regions provided evidence for the differential activation of the gene network. A method using high-throughput sequencing to map the binding sites and relative enriched regions of alkylating PIP throughout the human genome was also developed. The genome-level mapping of alkylating the PIP-enriched region and the binding sites on the human genome identifies significant genomic targets of breast cancer. It is anticipated that this pioneering low-cost, high through-put investigation at the sequence-specific level will be helpful in understanding the binding specificity of various DNA-binding small molecules, which in turn will be beneficial for the development of small-molecule-based drugs targeting a genome-level sequence. Back Cover This book focuses on an "outside the box" notion by utilizing the powerful applications of next-generation sequencing (NGS) technologies in the interface of chemistry and biology. In personalized medicine, developing small molecules targeting a specific genomic sequence is an attractive goal. N-methylpyrrole (P)-N-methylimidazole (I) polyamides (PIPs) are a class of small molecule that can bind to the DNA minor groove. First, a cost-effective NGS (ion torrent platform)-based Bind-n-Seq was developed to identify the binding specificity of PIP conjugates in a randomized DNA library. Their biological influences rely primarily on selective DNA binding affinity, so it is important to analyze their genome-wide binding preferences. However, it is demanding to enrich specifically the small-molecule-bound DNA without chemical cross-linking or covalent binding in chromatinized genomes. Herein is described a method that was developed using high-throughput sequencing to map the differential binding sites and relative enriched regions of non-cross-linked SAHA-PIPs throughout the complex human genome. SAHA-PIPs binding motifs were identified and the genome-level mapping of SAHA-PIPs-enriched regions provided evidence for the differential activation of the gene network. A method using high-throughput sequencing to map the binding sites and relative enriched regions of alkylating PIP throughout the human genome was also developed. The genome-level mapping of alkylating the PIP-enriched region and the binding sites on the human genome identifies significant genomic targets of breast cancer. It is anticipated that this pioneering low-cost, high through-put investigation at the sequence-specific level will be helpful in understanding the binding specificity of various DNA-binding small molecules, which in turn will be beneficial for the development of small-molecule-based drugs targeting a genome-level sequence. Table of Contents Overview of Next-Generation Sequencing Technologies and its application in Chemical Biology.- Next Generation Sequencing Studies Guide the Design of Pyrrole-Imidazole Polyamides with Improved Binding Specificity by the Addition of β-alanine.- Genome-Wide Assessment of the Binding Effects of Artificial Transcriptional Activators by Utilizing the Power of High-Throughput Sequencing.- Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing. Feature Nominated by Kyoto University as an outstanding Ph.D. thesis Reviews multitasking applications of next-generation sequencing (NGS) technologies for chemical biologists Describes low-cost Bind-n-Seq and small molecules based genomic pull-down development, identification of high-affinity binding sites for PIP conjugates using high-throughput sequencing, and the binding motif-guided redesign of PIPs Description for Sales People Nominated by Kyoto University as an outstanding Ph.D. thesis Reviews multitasking applications of next-generation sequencing (NGS) technologies for chemical biologists Describes low-cost Bind-n-Seq and small molecules based genomic pull-down development, identification of high-affinity binding sites for PIP conjugates using high-throughput sequencing, and the binding motif-guided redesign of PIPs Details ISBN9811348995 Author Anandhakumar Chandran Series Springer Theses Language English ISBN-10 9811348995 ISBN-13 9789811348990 Format Paperback Pages 114 Publisher Springer Verlag, Singapore Imprint Springer Verlag, Singapore Subtitle With the Power of High-Throughput Sequencing in Chemical Biology Place of Publication Singapore Country of Publication Singapore DEWEY 547 Year 2019 Publication Date 2019-01-26 Short Title Advancing Development of Synthetic Gene Regulators UK Release Date 2019-01-26 Illustrations 44 Illustrations, color; 5 Illustrations, black and white; XV, 114 p. 49 illus., 44 illus. in color. Edited by Francois Raulin Birth 1974 Affiliation European University Viadrina, Germany Position journalist Qualifications S. J. Edition Description Softcover reprint of the original 1st ed. 2018 Alternative 9789811065460 Audience Professional & Vocational We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:126693068;
Price: 217.11 AUD
Location: Melbourne
End Time: 2025-01-14T21:07:15.000Z
Shipping Cost: 9.46 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
ISBN-13: 9789811348990
Book Title: Advancing Development of Synthetic Gene Regulators
Subject Area: Bioengineering, Physical Therapy
Item Height: 235 mm
Item Width: 155 mm
Author: Anandhakumar Chandran
Publication Name: Advancing Development of Synthetic Gene Regulators: With the Power of High-Throughput Sequencing in Chemical Biology
Format: Paperback
Language: English
Publisher: Springer Verlag, Singapore
Subject: Chemistry
Publication Year: 2019
Type: Textbook
Item Weight: 215 g
Number of Pages: 114 Pages